AI Lab

Open Artificial Intelligence Laboratory

Моделирование процессов распространения возбуждения в нейронах. Выводы и прикладное применение.

Рейтинг:   / 0

3-й семинар

Докладчик: А.Н. Никанкин

icon Презентация (2.2 Мбайт) и аудиозапись доклада

Общее между реальной клеткой и стандартной моделью нейрона - только название. Для этой модели существует множество алгоритмов, так или иначе основанных на матричном исчислении. В реальных задачах, связанных с построением больших систем, применение подобных подходов неприемлемо из-за низкого быстродействия, плохого распараллеливания, ограниченности возможностей обучения, низкого подобия естественным нейронам. Новая модель призвана преодолеть эти ограничения. Основа этой модели - моделирование кусочков мембраны с ионными каналами. Было промоделировано распространение активности по мембранам с различным расположением ионных каналов. Были выведены паттерны ответа нейрона в зависимости от топологии дендритов. В модель включены модели глиальных клеток как средство управления "глупыми" нейронами. Построена модель кортикальной колонки. Рефакторинг модели с максимальным сохранением функционального подобия естественным нейронам привел к получению чистых алгоритмов, позволяющих очень быстро работать в реальных "боевых" системах, например, это позволило создать алгоритмы быстрого поиска (индексации), устойчивого к шумам распознавания, выявления закономерностей в больших массивах данных. На этой же основе построен псевдо-интеллект проекта ПИПС.

Базовая концепция искусственного интеллекта

Рейтинг:   / 0

2-й семинар

Докладчик: к.т.н. О.В. Прогаров

icon Аннотация (27 Кбайт) и аудиозапись доклада

Раскрыты конструктивные рамки интеллекта и предложены его признаки. На базе этих признаков рассмотрен схематичный пример использования ии-системы на биржевых рынках. Предложены уровни моделирования: система в целом, функциональный модуль, слой модуля, узел (нейрон). Раскрыта архитектура верхнего уровня ии-системы, состоящая из анализаторов, селекторов, компараторов и др. модулей. Рассмотрена архитектура функционального модуля на примере анализатора среды. Предложена неравновесная модель узла. Обоснован выбор ряда модификаций, отличающих предлагаемую модель узла (нейрона) от существующих.

Метод принятия решений на основе интеграции распознавания образов и моделир-я стохастической среды

Рейтинг:   / 0

2-й Семинар 

Докладчик: к.т.н. В.А. Анисимов

icon Презентация (118.5 Кбайт) и аудиозапись доклада

Использование в той или иной форме модели мира является одним из основных атрибутов как живых, так и искусственных интеллектуальных систем, ибо управление можно осмысленно реализовывать лишь на основе возможности предсказания последствий тех или иных действий системы. Возможны различные подходы и концепции к реализации этой задачи, однако, представляется важным, что бы единая концепция могла быть использована для максимально широкого круга задач, ибо это существенно сокращает ресурсные расходы на создание такого рода систем. С этой точки зрения представляется достаточно перспективным подход, применённый нами впервые для задачи распознавания рукописного текста, который, с моей точки зрения, может быт обобщён на гораздо более широкий круг приложений.

Подробнее...

Современные тенденции и перспективы области искусственного интеллекта

Рейтинг:   / 0

1-й семинар

Докладчик: д.т.н. А.С. Потапов

icon Презентация (152.5 Кбайт) и аудиозапись доклада

 Принципиально новых идей в области ИИ не появлялось достаточно давно: секции современных конференций соответствуют весьма традиционным разделам ИИ. Современное состояние области искусственного интеллекта связано, скорее, с разработкой сложных систем.  Но при этом используются теории, которые создавались для упрощенных случаев и искусственно изолированных задач. Попытки же создания "общих теорий интеллекта" зачастую сводятся к очерчиванию лишь его общей структуры, мало пригодной для использования на практике. Требуется же нечто иное - теория построения сложных систем. Целью настоящего семинара и предлагается сделать проведение анализа проблемы синтеза сложных интеллектуальных систем, используя как нисходящий метод – от общих схем к конкретике, так и восходящий метод – путем обобщения непосредственного прикладного опыт.

Подробнее...